Gynandromorphism is a teratological condition in which an individual displays both male and female phenotypic traits. Among Hymenoptera, accumulated knowledge of bees (Anthophila) and observations of gynanders provide valuable insights into how these phenomena occur (Wcislo et al. 2004; Michez et al. 2009). Within the Apidae, several cases were documented (Wcislo et al. 2004; Michez et al. 2009), with many observations coming from the genus Xylocopa (Maidl, 1912; Enderlein, 1913a, 1913b; Carcasson, 1965; Gordh & Gulmahamad, 1975; Lucia et al., 2009, 2012, 2015; Zama & Coelho, 2017; Almeida et al., 2018; Villamizar, 2020; Almada et al., 2022). This extensive dataset for a single genus provides solid points of comparison for understanding the mechanics of gynander formation.
A Xylocopa aeneipennis (De Geer, 1773) sensu Mawdsley (2018) gynander specimen collected in Raleigh Falls (Suriname) in 1990, was found in the entomological collection of the Naturalis Biodiversity Center, Netherlands. This specimen is placed within the subgenus Neoxylocopa based on its ventral carina strongly developed and the dorsolateral margin of clypeus strongly raised above adjacent paraocular area (Fig. 1c). This specimen represents the first documented case of gynandromorphism in X. aeneipennis. It falls into the category of mosaic gynandromorphs, characterized by the random distribution of male and female traits across the body (Michez et al. 2009). Most of the body exhibits a female phenotype, except for the right half of metasomal tergum 1 and a small portion of the right side of the propodeum, which display male characteristics (Fig. 1a,b,c,d). The female phenotype is identifiable by the black cuticle and body hair, whereas the male phenotype is distinguished by the orange-colored cuticle and the highly plumose, orange body hair, features commonly observed in many male Xylocopa (Fig. 1e,f).
Compared to other Xylocopa gynanders, this specimen exhibits reduced phenotypic abnormalities, suggesting that gynandromorphism may be triggered at different embryological stages. Under the assumption that earlier developmental anomalies lead to more pronounced gynandromorphism, this case may represent a later-stage occurrence. The frequent detection of these anomalies in the Xylocopa genus is likely due to the relatively large body size for a bee (i.e. they are very visible in an entomological collection and in the field) and probably the strong sexual dimorphism (i.e. black color for female versus yellow for male in many species). The accumulation of data within a single genus provides numerous reference points for comparative analyses, contributing to a better understanding of teratological mechanisms. Rather than the significance of any single specimen, it is the growing catalog of documented cases that will serve as a foundation for future studies on the underlying mechanisms of this phenomenon (Brau et al., 2024).
Almada V, Ramello P J, González V H, Lucia M (2022) Descriptions of new gynandromorphs of Xylocopa augusti Lepeletier (Hymenoptera: Apidae: Xylocopini) from Argentina. Papéis Avulsos de Zoologia, 62, e202262058. https://doi.org/10.11606/1807-0205/2022.62.058
Almeida R P S, Leite L a R, Ramos K D S (2018) Two new records of Gynandromorphs in Xylocopa (Hymenoptera, Apidae s.l.). Papéis Avulsos de Zoologia, 58, 17. https://doi.org/10.11606/1807-0205/2018.58.17
Brau T, Rosa P, Carion F, Flaminio S, Ghisbain G (2024). A new case of gynandromorphism in the Halictus simplex species group (Hymenoptera: Halictidae). Specimen, 37. https://doi.org/10.56222/28166531.2024.37
Carcasson R H (1965) A remarkable gynandrous carpenter bee. Journal of the East Africa Natural History Society and National Museum, 25(1): 75. https://www.biodiversitylibrary.org/page/51506341
De Geer C (1773) Mémoires pour servir à l’histoire des insectes. Vol 3. Pierre Hesselberg, Stockholm. 696 pp.
Enderlein G (1913a) Zur kenntnis des xylocopen Südamerikas und über einen zwitter von Xylocopa ordinaria. Archiv für Naturgeschichte, 79(2): 156-170. https://www.biodiversitylibrary.org/page/13325188
Enderlein G (1913b) Ein hervorragenden zwitter von Xylocopa mendozana aus Argentinien. Stettiner Entomologische Zeitung, 74: 124-140. https://www.biodiversitylibrary.org/page/8825066
Gordh G & Gulmahamad H (1975) A bilateral gynandromorphic Xylocopa taken in California (Hymenoptera: Apidae). Proceedings of the Entomological Society of Washington, 77(3): 269-273. https://www.biodiversitylibrary.org/page/16310919
Lucia M, Abrahamovich AH, Alvarez LJ (2009) A gynandromorph of Xylocopa nigrocincta Smith (Hymenoptera: Apidae). Neotropical Entomology, 38(1), 155–157. https://doi.org/10.1590/s1519-566x2009000100020
Lucia M, Alvarez LJ, Abrahamovich AH (2012) Gynandromorphism in Xylocopinae Bees (Hymenoptera: Apidae): description of four new cases. Zootaxa, 3401(1). https://doi.org/10.11646/zootaxa.3401.1.2
Lucia M, Villamil SF, Gonzalez VH (2015) A gynandromorph of Xylocopa augusti and an unusual record of X. iris from Brazil (Hymenoptera: Apidae: Xylocopini). Journal of Melittology, 53: 1-7. https://doi.org/10.17161/jom.v0i53.4979
Maidl F (1912) Über einen fall von lateraler gynandromorphie bei einer holzbiene (Xylocopa micans Lep.). Verhandlungen der kaiserlich-königlichen zoologisch-botanischen Gesellschaft in Wien, 62(1): 19-26. https://www.biodiversitylibrary.org/page/42860536
Mawdsley J R. (2018) New records and diagnostic notes on large carpenter bees (Hymenoptera: Apidae: genus Xylocopa Latreille), from the Amazon River basin of South America. Insecta Mundi, 631: 1-15. https://doi.org/10.5281/zenodo.3699701
Michez D, Rasmont P, Terzo M & Vereecken NJ (2009) A synthesis of gynandromorphy among wild bees (Hymenoptera: Apoidea), with an annotated description of several new cases. Annales de la Société Entomologique de France (N S), 45(3), 365‑375. https://doi.org/10.1080/00379271.2009.10697621
Villamizar G (2020).A new case of gynandromorphism in Xylocopa frontalis (Olivier) (Hymenoptera: Apidae), with an updated review of records in Xylocopinae Latreille. Revista chilena de Entomología, 46(2), 189–200. https://doi.org/10.35249/rche.46.2.20.09
Wcislo WT, Gonzalez VH, Arneson L (2004) A review of deviant phenotypes in bees in relation to brood parasitism, and a gynandromorph of Megalopta genalis (Hymenoptera: Halictidae). Journal of Natural History 38: 1443–1457. https://doi.org/10.1080/0022293031000155322
Zama P C, Coelho I R (2017) New cases of gynandromorphism in Xylocopa latreille, 1802 (Hymenoptera: Apidae). Papéis Avulsos De Zoologia, 57(24), 313–319. https://doi.org/10.11606/0031-1049.2017.57.24
Fig. 1. Studied Xylocopa aeneipennis gynander, RMNH.INS.1713996. a) Habitus in dorsal view. b) Habitus in lateral view. c) Head in frontal view. d-f Phenotypic comparison of metasoma d) Metasoma of Xylocopa aeneipennis gynander. e) Metasoma of Xylocopa aeneipennis male. f) Metasoma of Xylocopa aeneipennis female. All scale bars are equal to 0.5cm. Photo by Thomas Wood, used with permission.